Kenan KILIÇASLAN

  • Friction Loss
  • Equation Solve
  • Differential Equation
    Calculations Equations

Systems of First Order Differential Equations

The solution of \(\displaystyle \small {\frac{dy}{dt}}=f_1(t,y,z)\), \(\displaystyle \small {\frac{dz}{dt}}=f_2(t,y,z)\) shaped differential equation systems, including \(y=y(t) \) and \(z=z(t) \), is done by numerical analysis method. You can use the +, -, *, / math operators and the following functions. Use the pow function to take the exponent. For example, for \(t^ 2\), type pow (t, 2).

The differential equation you want to solve:
Variable Number
Formula:

Variables
\(\displaystyle\small {\frac{dy}{dt}}=f_1(t,y,z)=\)
\(\displaystyle\small {\frac{dz}{dt}}=f_2(t,y,z)=\)
Necessary boundary conditions for solution
\(\displaystyle\small t_{0}=\)
\(\displaystyle\small y_{0}=\)
\(\displaystyle\small z_{0}=\)
The desired \(t\) value
\(\small t_n=\)
Increment \(\small\Delta t=\)

Functions to be used in equations:
\(\begin{array}{lll|lll} x^a & : & \mathrm{pow(x,a)} \\\sin\, x & : & \mathrm{sin(x)} &\cos\,x & : & \mathrm{cos(x)} \\\tan\,x & : &\mathrm{tan(x)} &\ln\,x & : & \mathrm{log(x)} \\e^x & : & \mathrm{exp(x)} &\left|x\right| & : & \mathrm{abs(x)} \\\arcsin\,x & : & \mathrm{asin(x)} &\arccos\,x & : & \mathrm{acos(x)} \\\arctan\,x & : & \mathrm{atan(x)} &\sqrt{x} & : & \mathrm{sqrt(x)} \\ \\\pi & : & \mathrm{pi} &e \mathrm{ number} & : & \mathrm{euler} \\\ln\,2 & : &\mathrm{LN2} & \ln\,10 & : & \mathrm{LN10} \\\log_{2}\,e & : & \mathrm{Log2e} & \log_{10}\,e & : & \mathrm{Log10e} \end{array}\)
beyaz_sayfa_en_alt_oval

Documents    Articles    Equations    Calculations    Unit Conversion    Contact

Pipe Calculations    Chimney Calculation    Air Ducts    Air Conditioning   



Kenan KILICASLAN 2024© Copyright.       Designed by Nuit